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In this paper we study the first application of adiabatic passage by light-induced potentials in polyatomic
molecules. We analyze the effects of increasing the dimensionality of the system on the adiabatic requirements
of the method and the role of intramolecular coupling among the vibrational modes. By using a model of
two-dimensional displaced harmonic oscillators with or without rotation of the normal mode axis of the excited
states (Duschinsky effect) we find that (1) it is possible to selectively transfer the vibrational population by
adiabatic elongation of the bonds, (2) the adiabatic demands depend mainly on the energy barrier between
the ground and excited electronic configurations, and not on the dimension of the system, (3) in the presence
of intramolecular couplings the selective transfer can be achieved but at the cost of increasing the duration
and/or the intensity of the pulses, which are needed to overcome small avoided crossings, and (4) the problem
of selectivity becomes more important as the vibrational energy of the initial wave function increases.

1. Introduction

The selective preparation of molecules in specific quantum
states is still one of the paradigm examples of Quantum Control,
with potential applications in molecular spectroscopy and
chemical reactivity.1-3 Among the many techniques of quantum
control, there has been a growing interest in developing adiabatic
passage methods.4,5 The adiabatic passage dynamics does not
depend on detailed quantum phase interference processes and
is usually more robust to the different pulse parameters and
fluctuations.4,5 Additionally, it allows a systematic study of the
scaling properties and the different physical resources that are
needed for the schemes to adequately operate.

In this work we apply a well-known scheme where the
adiabatic passage is controlled by counterintuitive pulse se-
quences. Using moderately intense and long pulses, the scheme,
known as StiRAP6-8 (Stimulated Raman Adiabatic Passage),
implies a fine-tuning of the Hamiltonian to allow resonant two-
photon state-to-state adiabatic passage between the initial and
target vibrational wave functions, bypassing an intermediate,
not populated state, that works as a “wave function bridge”
connecting both states.9

Using stronger and shorter pulses, Garraway and Suominen
proposed the APLIP (adiabatic passage by light-induced po-
tential) scheme.10 The strong pulses modify the structure of the
electronic potential, mixing different electronic states, which
thus exhibit “intermediate” properties.11,12 In APLIP, this
adiabatic potential modulated by the laser pulses (or LIP13)
correlates at the initial time with the ground electronic state
and at the final time with the desired excited potential. At all
times the LIP has a well defined structure, with laser-controlled,
smoothly changing properties, so that the wave function can
adiabatically move from the initial state to the desired target
wave function. The spatial adiabaticity of the wave packet
motion ensures that the nodal pattern of the wave function is
conserved during the transfer. Therefore, the selective wave

function transfer implies a mapping of the original wave function
onto the excited potential. This mapping is unique for diatomic
molecules (one-dimensional wave functions), but this is not
necessarily the case for N-dimensional systems. In passing, we
note that there are other schemes that allow fast adiabatic
passage via dissociative states, as in the time-gating scheme,14

although probably with less final selectivity, since the wave
function is not an eigenstate of the LIP.

Until now, several extensions of the APLIP scheme have been
proposed,15-19 although no experimental results are still avail-
able. All the work has been related to simple diatomic molecules.
In this paper we propose and test the first application of APLIP
to polyatomic molecules. We use a two-dimensional dynamical
model (two vibrational modes) with harmonic potentials to
address mainly two questions: (1) can a multidimensional wave
packet be transferred by the APLIP scheme and how does the
physical resources scale with the dimensionality and (2) how
is the adiabatic motion of the wave packet affected by
intramolecular couplings, or alternatively, how can the original
wave function be mapped on the excited potential when the
assignment of vibrational quanta differs in both potentials.

To explain in more detail the dynamical mechanism of
APLIP, we shall use now an example of dynamics in a two-
dimensional potential. As in most molecules, the equilibrium
configuration of the target electronic state is displaced to a larger
bond distance in both vibrational modes, while we need as well
an intermediate electronic potential which we also consider with
a displaced equilibrium configuration (although the intermediate
potential features practically do not affect the dynamics of the
system). In APLIP, the one-photon transition between the ground
and intermediate excited state is broadly shifted to the blue of
the resonance20 so that the intermediate potential is barely
populated. In Figure 1 we show the results of the dynamics
when we apply a counterintuitive sequence of strong nonreso-
nant pulses. The result is obtained solving the Schro¨dinger
equation of the system, and details about the model and the
numerical procedure are given in the next section.

The dynamics can be explained in terms of a simple electronic
lever mechanism induced by a clever choice of timing and
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direction of the induced Stark-shifts.10,15,9To understand it, it
is convenient to dress the potentials with the photon energies.
In APLIP, V1(r1, r2) + p(ω1 + ω2) is in resonance with
V3(r1, r2) but blue-shifted fromV2(r1, r2) + pω2. In the adiabatic
representation (see Figure 1) the initial LIP is a double well
potential, with the closer (left) well representing the ground
equilibrium configuration, and the further (right) well represent-
ing the excited equilibrium configuration. Notice that the desired
two-photon transition from the ground eigenstate ofV1 to the
ground eigenstate inV3 is a highly non-Franck-Condon
transition that must drive the wave packet from the bottom of
one well to another. This can be done in a tunneling fashion,12

involving only the initial and final levels (as it occurs in StiRAP)
or by promoting the wave packet over the energy barrier, as in
APLIP.

The APLIP mechanism works in the following way. First
the second pulse, couplingV2 with V3 is switched on. The strong
nonresonant field induces a Stark-shift that lifts the right well
increasing the energy barrier. However, as the second pulse
decreases and the first pulse (couplingV1 with V2) increases,
the left well is lifted over the right well, allowing the wave
packet transfer. In fact, in the adiabatic representation the energy
barrier is suppressed by the strong fields, so that the LIP has a
single well. Thus, the wave packet is trapped at the bottom of
the potential during all the transfer and the dynamics is
“spatially” adiabatic. Finally, both pulses are switched off, and
the shape of the initial LIP is restored with the wave packet at
the bottom of the right well.

As Figure 1 shows, in the energy representation the motion
of the wave packet from one configuration to the other involves
the transient excitation of several excited vibrational eigenstates,
first of V1 and then ofV3, so that in the diabatic representation
the average energy of the wave packet at intermediate times is
above the energy barrier. This is in stark contrast to the StiRAP
process, where only the initial and target states are populated,
as the dynamics proceeds in a tunneling fashion.12

The remainder of the paper is organized as follows. In section
2 we detail the Hamiltonian of the system. We use simplified
models with the goal of analyzing the essential features of
polyatomic molecular dynamics that can affect the outcome of
the APLIP process. The results of the APLIP process are given
in sections 3-5. In section 3 we consider the APLIP dynamics
and the onset of adiabatic conditions when the excited-state
equilibrium configuration is displaced in one or more normal
modes, that is, when the transfer process implies a translation
of the wave function in one or two dimensions. In section 4 we
consider the case where the normal mode axis in the target state
are rotated with respect to those of the ground state. This
physical process is called the Duschinsky effect21,22 inducing
the coupling between the vibrational modes in the Hamiltonian,
analogous to what occurs in other intramolecular processes. In
this case, the APLIP transfer implies the rotation of the wave
function. In section 5 we consider the case of translation and
rotation of the wave function. Finally, section 6 is the conclu-
sions.

2. Molecular Model with Two Vibrational Coordinates

To address the viability of APLIP in polyatomic molecules,
we consider a simple molecular model of three electronic
potential surfaces with two active vibrational modes coupled
by two laser pulses. We assume the rotating wave approxima-
tion23 and two-photon resonance between the initial and second
excited electronic potential, with general Hamiltonian

The different terms entering in the Hamiltonian are as follows:
(1) T i ) -p2/2G11

(i)
∂2/∂r1

2 - p2/2G22
(i)

∂2/∂r2
2 - p2G12

(i)
∂2/∂r1r2 is

the kinetic energy term associated to the (normal) modesr1 and
r2. The mass-related coefficients are typically the same for the
different electronic states (see Table 1), but we allow for a
kinetic energy coupling term in the final potential (changes in
the intermediate potential barely affect the APLIP process)
which implies a rotation in the normal coordinates of the excited
state with respect to the normal coordinates defined for the
ground potential (Duschinsky effect). Therefore, we can write
T1 ) T2 ) T andT3 ) T + Tc, whereTc is the kinetic coupling
term (whenG12

(3) * 0). In section 4 we explain how we model
the effect of this coupling.

(2) Vj(r1, r2) are the potential energy surfaces in the normal
vibrational modesr1 and r2. We choose harmonic potentials
Vi(r1, r j) ) 1/2F11

(i)(r1 - r1,0
(i) )2 + 1/2F22

(i)(r2 - r2,0
(i) )2 + F12

(i)(r1 -
r1,0

(i) )(r2 - r2,0
(i) ). In different simulations we vary the displace-

mentdB between the potential minima asrb0
(3) ) rb0

(1) + dB ) rb0
(2) +

dB/2 (where rb0
(i) ) (r1,0

(i) , r2,0
(i) ), and the intermediate excited

potential is symmetrically displaced). By definition, the recti-
linear normal modes are uncoupled in the harmonic approxima-
tion (F12

(i) ) 0). However, when the normal coordinates of the

Figure 1. Dynamics of APLIP to an excited potential with displaced
equilibrium configuration in two normal modes. In (a) we show the
population dynamics, in (b) the pulse profiles, and in (c) snapshots of
the wave packet in the light-induced potential at different times,
exhibiting the sequential steps of the APLIP mechanism.

TABLE 1: Hamiltonian Parameters for the Symmetric
(SPM) and Asymmetric (APM) Potential Models

SPM AMP

r1 r2 r1 r2

Gii
-1 (au) 21600 43200 21600 21600

Fii (au) 0.4 0.4 0.2 0.1
ω (cm-1) 609 430 609 430

H ) (T1 0 0
0 T2 0
0 0 T3

) + (V1(r1,r2) -Ω1(t)/2 0
-Ω1(t)/2 V1(r1,r2) - ∆ -Ω2(t)/2
0 -Ω2(t)/2 V3(r1,r2)

)
(1)

Light-Induced Potentials in Polyatomic Molecules J. Phys. Chem. A, Vol. 110, No. 4, 20061587



excited potential are rotated,rb(3) ) R(θ)rb(1) (R(θ) is a rotation
matrix), they induce the coupling between the two oscillators
in the normal coordinates defined by the ground state, given
by F12

(3). In section 4 we explain how we estimateF12
(3) in the

frame of the Duschinsky effect. The Hamiltonian parameters
for the system models are given in Table 1.

(3) ∆ ) 0.02 au (∼4400 cm-1) is the one photon blue-shifted
detuning, which we fix in all simulations.

(4) Ω1(t) and Ω2(t) are the Rabi frequencies. We choose
Gaussian-shaped laser pulses in counterintuitive order, so that
for a conveniently chosen initial time we write

and

Both pulses have the same shape and are just shifted in time,
whereσ is the time-width of the lasers andτ is the (positive)
time delay. We assume the Franck-Condon approximation with
a unit dipole moment,µij(r1, r2) ) 1, allowing both modes to
be coupled to the radiation.ε0 is the peak amplitude. We
consider two different time-durations: For shorter pulsesσ )
400 fs,τ ) 500 fs, while for longer pulses we setσ ) 2.4 ps
andτ ) 3 ps.

The Schro¨dinger equation is solved using the Split-Operator
method to second-order coupled to Fast-Fourier Transform grid
techniques.24 The potential energy term in the split-propagator
is diagonalized at each instant of time. In the presence of kinetic
energy intramolecular coupling, a further approximation is
introduced by splitting the kinetic energy term using

whereR ) - i∆t/p, v is the potential energy matrix,I is the
unit matrix, and we assume that the coupling only appears in
the final excited potential when the normal mode axis are
rotated.Tc involves a two-dimensional Fast Fourier transform.
In all simulations we start in an eigenstate of the Hamiltonian,
denoted by the normal mode quantum numbers (V1, V2) of the
ground electronic state.

3. Adiabatic Passage as a Function of the Vibrational
Mode Displacement

In this section we compare the APLIP performance when
the displacement between the equilibrium position of the
V1(r1, r2) andV3(r1, r2) electronic potentialsdB ) (d1, d2), changes
in either one or both coordinates, that is, when the equilibrium
configuration of one or both vibrational modes is displaced in
the electronic excited states. All results are obtained using the
same force (Fii) and kinetic (Gii) matrix elements for all the
electronic potentials, following the SPM model parameters
shown in Table 1.

Obviously, the APLIP process can occur in both cases, as
shown in the Introduction, but the effort or physical resources
needed to obtain high yields of population transfer depends on
the direction of the displacement. In Figure 2 we show the
variation of the yield of APLIP as a function of the pulse peak
amplitude (or peak intensity) for two cases,dB ) (0.3, 0) au and
dB ) (0, 0.3) au. In the first case a smaller pulse amplitude is
needed in order to reach the adiabatic threshold, which we

arbitrarily fix when a yield larger than 0.95 is achieved. We
can define two different thresholds: the electronic threshold
êe, that measures the intensity demands to drive the electronic
population toV3, and the selective thresholdês, which considers
selective excitation of a single vibrational target state onV3.
Starting in (V1, V2), a selective APLIP process should prepare
the system in the same vibrational wave function of the excited
potential. This can be explained by the “spatial” adiabaticity of
the dynamics: a wave function can be distorted but cannot
change the nodal patterns when the dynamics is adiabatic. The
spatial adiabaticity is more time and energy demanding than
just the electronic excitation, since not only the energy barrier
must be removed but also the LIP must have all the time a
stable equilibrium configuration where the wave packet is
located and must change smoothly from one configuration to
another. These requirements imply that the difference between
ês andêe usually increases with the wave packet displacement.9

In Figure 3 we show the variation of the APLIP thresholds
as the equilibrium distance inV3 is shifted alongr1 or r2. Notice
that the electronic potential is symmetric in both coordinates,

Figure 2. Electronic (P3) and vibrational population on the target state
[P3(V ) 0)] in APLIP as a function of the pulse amplitude (lower scale)
or intensity (upper scale) for two different excited potentials. We fix
the adiabatic threshold when the population is larger than 0.95.

Figure 3. Adiabatic thresholds as a function of the energy barrier,
when the excited state is translated in one (r1 or r2) or both vibrational
modes.

Ω1(t) ) µ12ε0exp(-t
2σ)2

(2)

Ω2(t) ) µ23ε0exp(-(t - τ)
2σ )2

(3)

exp(RH) ≈
exp(R2V)exp(R2TI )exp(RTcδ13I )exp(R2TI )exp(R2v) (4)
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and therefore the energy barrierEbar does not depend on the
direction of displacement. However, sinceG22 is smaller than
G11 (for equal force constant),ω2 < ω1 and the wave packet
needs more energy from the pulse to overcome the barrier.
Hence, the adiabatic threshold is shifted to higher pulse
intensities when the bond is elongated alongr2. For larger bond
displacements (largeEbar) the adiabatic thresholds increase
considerably. This is partially because as we fix the detuning
the required Rabi frequencies become much larger than∆. Then,
more extra energy is needed to avoid the flow of population to
V2 and sustain the adiabatic passage regime.9

A good way of considering the intensity demands is in terms
of Ebar divided by the vibrational quanta,ω1 and ω2, which
gauges the average vibrational excitation of the wave packet
needed to overcome the barrier. For instance, ifdB ) (0.4, 0)
au, thenEbar ) 4‚10-3 au, andEbar/ω1 ) 1.3, so that the wave
packet must be excited over (1, 0) in the ground potential (and
in the excited potential as well). However, fordB ) (0, 0.4) au
the same energy barrier impliesEbar/ω2 ) 1.9, so that on
average, the wave packet must be excited over the vibrational
state (0, 2) before reaching the target state.

From a different perspective, the same reasons imply that
the initial wave packet is more squeezed in ther2 mode than in
r1. The overlapping between the initial state and the target state
is therefore smaller, and the APLIP dynamics involves consider-
able transient excitation of other vibrational states both in
V1(r1, r2) and V3(r1, r2) as the wave packet moves alongr2.
Conversely, the overlapping is larger when the displacement
occurs along ther1 mode, so that in this case almost only the
initial and final vibrational states are populated and the two-
state dynamics are very similar to that of StiRAP.6,5 In fact, for
dB ) 0 the APLIP and StiRAP dynamics converge.9 This is why
the electronic and selective thresholds are approximately the
same when the wave packet moves alongr1 but depart when
the wave packet moves alongr2 (obviously withês > êe).

The equilibrium position ofV3 can also be displaced along
both normal modes. In Figure 1 we showed a typical APLIP
dynamics in the adiabatic representation, following the wave
packet in the LIPU0(r1, r2, t), for dB ) (0.3, 0.3) (|dB| ) 0.42,
Ebar ) 4.5‚10-3). Since the harmonic potentials in the model
are symmetric,Ebar depends only on the distance|dB|, not the
direction. We expect the threshold of adiabatic passage to be
approximately between those for displacement alongr1 andr2

alone, since we can define an “average” vibrational quantum
to gauge the magnitude ofEbar, which will be betweenω1 and
ω2. This behavior is observed to be approximately correct, as
Figure 3 shows.

Additionally, we have tested the dependence of the adiabatic
thresholds on the initial state. As noted, the APLIP dynamics
maps the initial wave function onto the final potential. Fixing
the displacement asdB ) (0.3, 0.3), in Figure 4 we have
calculated the electronic and selective thresholds. Bothêe and
ês increase with the quantum numbers. This effect cannot be
explained by the energy barrier, which in fact is smaller for an
excited vibrational wave function. We believe that the under-
lying reason is due to “spatial” adiabaticity requirements. For
increasing quantum numbers, the energy separation between
adjacent vibrational eigenstates tends to decrease even for
harmonic potentials in polyatomic molecules, since the vibra-
tional quanta can be shared between different modes with similar
frequencies. Thus the need to increaseês (andêe) in order to
satisfy the adiabatic demands. The same rule seems to apply
for a given quantum depending on its distribution among the
modes. The greater the energy (ω1 > ω2) the greater the

adiabatic thresholds. Another possible way to improve the
adiabaticity implies using longer pulses. Thenês can remain
constant.

4. Adiabatic Excitation between Electronic Potentials
with Rotated Normal Modes

The normal modes are linear combinations of the local modes
typically obtained by diagonalizing the Hessian matrix.25 This
linear combination can be different in the excited potential,
leading to a rotation of the vibrational wave functions of the
excited state related to the normal axis for the ground potential.
This is usually called the Duschinsky effect.21,22 The APLIP
method maps the initial wave function onto the final potential
conserving the vibrational quanta. We want to test if this
mapping is affected (and how) by the rotation of the vibrational
mode axis, and thus of the linear combination that defines the
vibrational quanta at the target state. In this section we consider
the unusual case when the equilibrium configuration of
V3(r1, r2) is only rotated with respect to that ofV1(r1, r2), while
in the next section we consider both rotation and translation of
the excited potential.

To model the effect of rotated normal modes, we first consider
that the normal modes ofV3 are rotated byR(θ) with respect
to those inV1 (rb′ ) R(θ)rb), and since the dynamics is followed
in the grid mapped onto the last ones, we calculateV3(R-1rb)
andR-1TR, obtaining

and

where we have assumed that the force and kinetic matrix
elements as well as the equilibrium configuration are the same
in both V1(rb) andV3(rb′) (thus in eqs 5 and 6 we have dropped
all superindexes identifying the electronic state). Notice that
the rotation of the normal axis introduces coupling terms
between the modes in both kineticTc and potentialVc(r1, r2)
energies. The rotation of the axis is a convenient way of

Figure 4. Adiabatic thresholds as a function of the initial state, for an
excited potential with equilibrium configuration shifted tod ) (0.3,
0.3).

V3(r1, r2) ) (F11cos2θ + F22sin2θ)(r1 - r1,0)
2 + (F11sin2θ +

F22cos2θ)(r2 - r2,0)
2 + (F11 - F22) sin 2θ(r1 - r1,0)(r2 -

r2,0) (5)

T3 ) -p2

2
(G11cos2θ + G22sin2θ)

∂
2

∂r1
2

- p2

2
(G11 sin2 θ +

G22 cos2 θ)
∂

2

∂r2
2

- p2

2
(G11 - G33)sin 2θ ∂

∂r1

∂

∂r2
(6)
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including the coupling between the modes, which allows a
systematic comparison of the results as a function of a single
parameter, the angle of rotationθ. In general, the termsVc and
Tc are not necessarily related, since other physical effects may
originate the intramolecular coupling between the modes.
However, the physical effects that they cause in the dynamics
are essentially the same, and therefore we expect our simple
models to provide quite general trends regarding the adiabatic
dynamics in realistic molecules.

We consider two set of parameters in the Hamiltonian. In
the first model, that we call the symmetric potential model
(SPM), the Duschinsky effect only induces kinetic couplings.
We also consider a second set of parameters with equal mass
terms (see Table 1) so that the couplings only enter in the
potential energy. This case, the asymmetric potential model
(APM), allows a simpler integration of the Schro¨dinger equation,
sinceTc ) 0 (see section 2).

In Figure 5 we show the electronic and selective adiabatic
thresholds as a function of the angle of rotationθ, for both SPM
and APM and different pulse durations, starting from two
different vibrational eigenstates, (0, 0) and (0, 1). SinceV3 is
only rotated with respect toV1, there is noEbar for the adiabatic
transfer. However, the transfer depends on the angle of rotation.
First, due to the symmetry of the Hamiltonian, the results are
the same forπ/2 ( θ, so that we only showêe and ês up to
90°.

Since (0, 0) is almost spherically symmetric, the thresholds
barely depend on the angle of rotation for this wave function.
The contrary occurs for (0, 1), whereêe raises specially forθ
> 60°, and the process cannot be selective using short pulses
(the yield of selectivity being greater than 0.95 for definingês).
In fact, increasing the peak amplitude one finds an asymptotic
maximum yield, which depends on the angle of rotation, as
shown in Figure 6. Forθ ) 90° this yield is zero. Obviously
there is a symmetry rule forbidding this transition.26

The dependence of the asymptotic yield (andês) on θ can be
partially explained in terms of the Franck-Condon factors that
govern the dynamics. SinceV2(r1, r2) is exactly equal to
V1(r1, r2), despite being off-resonant, the initial state is only
coupled to a single intermediate state, with the exact form as
the initial one. Therefore, the adiabatic passage between the
initial state inV1(r1, r2) and the target state inV3(r1, r2) will
mainly depend on direct overlap between the initial and target
states, which we show in Figure 7. The Franck-Condon factor
between the (0, 0) wave function ofV1 and the (0, 0) wave
function in V3 barely depends onθ, which reflects the minor

dependence ofês on θ. However, the Franck-Condon factor
between the (0, 1) states inV1 andV3 steadily decreases reaching
zero forθ ) 90°: at this point (0, 1) inV1 is exactly equal to
(1, 0) inV3 and therefore orthogonal to the target state. In fact,
for both SPM and APM with pure rotation, the dynamics has
intermediate features between StiRAP and APLIP: the selectiv-
ity depends mainly on a single intermediate state acting as a
wave function bridge as in StiRAP; however, the pulse intensity
and detuning allows several other pathways to promote the
population to the excited potential, as in APLIP.

The existence of a nonzero Franck-Condon factor forθ
different than 90° implies that the selective excitation should
be possible, even if with stronger fields that compensate for
the smallness of the coupling. In Figure 8 we analyze the
breakdown of the selective adiabatic passage following the
quasi-energies of the vibrational states ofU0(r1, r2, t) as it
evolves in time, forθ ) 80° and the same pulse parameters.
The eigenvalues of the LIP were obtained using the Fourier
Grid Hamiltonian method.27 U0(r1, r2, t) is mainly constructed
as a linear combination ofV1(r1, r2) andV3(r1, r2), the degree
of the mixing being controlled by the pulse amplitudes.
Therefore,U0(r1, r2, t) must twist as the normal coordinate axis
change from those of the ground to those of the excited potential.
This induces a small avoided crossing between the eigenvalues
corresponding to the different vibrational dressed states with

Figure 5. Adiabatic thresholds in APLIP with Duschinsky rotation in
the excited potential for the SPM and the APM using shorter and longer
pulses. The initial state is (0, 1).ês blows up after a certain angle of
rotation.

Figure 6. Final population in APLIP with Duschinsky rotation in the
excited potential as a function of the laser amplitude using shorter (left)
and longer (right) laser pulses. The initial state is (0, 1). Electronic
populations are in solid lines forθ ) 70°, 80° (line with circles) and
90° (line with squares), while the target population in (0, 1) are in
broken line forθ ) 70° or in circles (80°) and squares (90°) without
line.

Figure 7. Franck-Condon factor between the (0, 0) states and the
(0, 1) states in the initial and final potentials, as a function of the angle
of rotationθ.
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the same sum of vibrational quanta. For instance, we observe
in Figure 8 that during a small interval of time (at maximum
peak amplitude of the lasers) there is a small avoided crossing
between the eigenvalues corresponding to (0, 1) and (1, 0) of
the LIP. Although the energy gap increases with the peak
amplitude, finally one needs a minimum time to sweep
adiabatically across the avoided crossing region. Therefore the
APLIP scheme can only work using longer time pulses.
Alternatively, the adiabatic thresholds imply weaker pulses, as
Figure 6 shows.

A rough estimate of the minimum time and the adiabatic
thresholds can be obtained assuming an StiRAP-type adiabatic
passage. The effective nonresonant two-photon Rabi frequency
is Ωeff ∼ µif

2
ε0

2/2∆,23 whereµif is the state-to-state transition
dipole, that is,µif

2 is the Franck-Condon factor between the
initial and the target state, shown in Figure 7. In order to have
adiabatic passage to the target state, one needsΩeffτ g 2π (to
ensure around 95% of population). However, at the same time
one must avoid the competing two-photon process that leads to
the (1, 0) state. The Rabi frequency for this process (Ωeff

⊥ ) has
the same form as the one before, with a different Franck-
Condon factor, which is practically 1- µif

2. The (1, 0) state is
off resonance for the two-photon absorption, so that the yield
of this process will become important only ifΩeff

⊥ g ∆ω,
where∆ω is the energy difference between the target state (0,
1) and (1, 0), that is, the shift from the resonance. In our model
∆ω ∼ 8‚10-4 au.

For θ ) 70°, µif
2 ) 0.11. Whenτ ) 0.5 ps, the adiabatic

threshold will be reached withΩeff ∼3‚10-4 au requiringε0

∼1.1‚10-2 au (comparable with what we obtain numerically).
However, at this laser amplitudeΩeff

⊥ ∼2.5‚10-3au . ∆ω, so
that the adiabatic passage leads to (1, 0) essentially. Only with
longer pulses (τ ) 3 ps) one obtainsΩeff ∼5‚10-5 au andΩeff

⊥

∼4‚10-4 au allowing selective adiabatic passage withε0

∼4.3‚10-3 au. The same type of calculation can be used to show
that forθ ) 60°, Ωeff

⊥ is of the order of∆ω already for shorter
pulses (τ ) 0.5 ps), while forθ ) 80°, following our simple
model, one would need 6 ps pulses in order to achieve selective
adiabatic passage.

To summarize, we have observed that even without a true
energy barrier, we need some extra energy coming from the
laser in order to rotate the wave packet (or distort the LIP) and
ensure the adiabatic passage. From the numerical results we

observe that this adiabatic demand is practically the same for
both APM and SPM models.

5. Two-Dimensional Adiabatic Rotation and Displacement
of the Wave Function

In this section we study the APLIP process when the target
potential is both displaced and rotated with respect to the ground
potential. In all the results of this section we fixdB ) (0.3, 0.3)
and change the rotation angleθ using both SPM and APM set
of parameters and pulses of different time durations. The
dynamics requires the adiabatic translation and twisting of the
wave packet as it adapts to the distorted LIP. In Figure 9 we
show the population history and average observables of the wave
packet in the adiabatic regime forθ ) 40°. SinceV2(r1, r2) is
also displaced with respect toV2(r1, r2) (by dB/2), several
intermediate states can be used during the adiabatic transfer,
and the dynamics clearly exhibits the APLIP signature of
transient population on excited vibrational states both in the
ground and target potentials.

The average observables provide interesting informa-
tion regarding the dynamics. We define〈rR(t)〉 )
〈ψ0(rb, t)|rR|ψ0(rb, t)〉, whereψ0(rb, t) is the adiabatic wave packet
in theU0 LIP. The average angle of rotation of the wave function
with respect to the initial state,〈θ(t)〉, is not a direct observable
and can only be inferred with respect to a chosen axis of
orientation. For the (0, 1) initial wave function the initialθ(0)
) 0° corresponds to choosingr2 as the “x” axis. Then the cosine
square of the angle will be the projection of the wave packet
onto ther2 axis, which must be shifted to the average position
of the wave packet, (r2 - 〈r2〉)/(rb- 〈rb〉). Normalizing, we obtain
for the angle

Figure 8. Dynamics of APLIP in the region of small avoided crossings.
We show the frequency and shape of the vibrational states of the LIP
as a function of time, forθ ) 80°. The (0, 1) and (1, 0) states almost
cross as the normal axis of the LIP twist from the initial to the target
state configurations.

Figure 9. Dynamics of APLIP with translated [d ) (0.3, 0.3)] and
rotated (θ ) 40°) excited potentials using shorter (left) and longer (right)
laser pulses. In both cases the initial state is (0, 1) andε0 ) 0.087 au.
We show the average positions〈r1(t)〉 and〈r2(t)〉 (left scale) and angle
〈θ(t)〉 (right scale) in the upper frames and the population histories in
the lower frames.

cos2〈θ(t)〉 ) |〈 r2 - 〈r2〉
| rb - 〈 rb〉||ψ0( rb, t)〉|2

|〈 r1 - 〈r1〉
| rb - 〈 rb〉||ψ0( rb, t)〉|2 + |〈 r2 - 〈r2〉

| rb - 〈 rb〉||ψ0( rb, t)〉|2
(7)
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In Figure 9, for the results of the APM, we show that〈r2(t)〉
shifts earlier than〈r2(t)〉. This is reasonable since in the APM
the energy barrier is smaller alongr2. On the contrary, in the
SPM we find 〈r1(t)〉 ) 〈r2(t)〉. More interestingly, we always
observe that the change in〈θ(t)〉 starts later and occurs more
rapidly than the shifts in position. Partially because of this, it is
also more difficult to avoid some fluctuations in the angle
(perfect adiabatic transfer) without using longer pulses.

In Figure 10 we show the electronic and selective thresholds
of population transfer for both the APM and SPM model using
shorter pulses. The selective transfer is not possible withθ >
60°. However, as opposed to the case of rotation alone, the
thresholds do not simply increase for largerθ. Additionally,
the selective excitation atθ ) 90° is not forbidden (even for
short pulses we reach the selective threshold in the SPM), and
the results are not symmetrical around this angle. The results
for the SPM and APM differ more considerably than before,
and we observe that the adiabatic demands are slightly larger
when the source of rotation comes from the kinetic energy
coupling, except for largeθ.

A more detailed analysis of the behavior of the yield of the
transfer as a function of the laser amplitude for largeθ is shown
in Figure 11. We consider the dynamics in the APM for shorter
and longer pulses. Although the electronic transfer is perfectly
adiabatic, the final population on the target state (0, 1) oscillates
before reaching the selective adiabatic threshold. In fact, the
final wave function is a superposition of (0, 1) and (1, 0). As in
the case of rotation alone, this is due to a small avoided crossing
for large θ. However, instead of reaching a plateau, the
superposition changes with the amplitude. For intermediate
values the avoided crossing can be made so small that all the
population is selectively transferred to (1, 0), while for very
large amplitude the transfer selects the original quantum state.
Qualitatively the same type of behavior is also observed when
using longer pulses.

6. Conclusions

Using two-dimensional harmonic oscillators as a molecular
model, we have shown that the APLIP process is in principle
feasible in polyatomic molecules. The adiabatic thresholds
depend mainly on the characteristics of the energy barrier and
therefore do not scale with the dimensionality of the system
but only with the energy involved in the spatial distance (the
bond elongations) that the wave function must cover to reach
the target destination. Additionally, we have tested the effect
of intramolecular energy transfer between the vibrational modes

in the form of Duschinsky couplings. Again, the transfer can
be efficient and selective, except for rather unlikely molecular
configurations. In principle, the adiabatic passage leads to a
single eigenstate of the target potential in the adiabatic
representation, which is obtained by diagonalizing the intra-
molecular coupling terms. This implies the rotation of the wave
function, which can be selective when the initial state leads
(without rotation) to a final superposition state or even to an
orthogonal state.

In this paper we have used quite simplified models, but we
believe that the models contain the majority of the essential
features that can hinder the APLIP process. The shape of the
potentials has been shown not to determine the outcome of the
APLIP transfer. We consider only two-dimensional systems,
but we have shown that the dimensionality is not a major
concern, except for calculations. Obviously the role of intra-
molecular couplings may deter the selectivity of the transfer.
We have shown how this may occur, in the frame of the
Duschinsky effect, for two models: in one all the couplings
enter into the kinetic energy and in the other the couplings occur
in the potentials. In both cases the dynamics may proceed
through regions of small avoided crossings, which tend to
increase as the density of states becomes larger. Then, the state
selectivity typically requires stronger and, more importantly,
longer pulses, and the adiabatic demands increase, even when
the bond elongation involved is rather small. These problems
normally affect in a minor way the ground vibrational eigen-
function but become predominant when involving vibrationally
excited wave functions coupled to more vibrational modes, i.e.,
higher dimensional systems. The same effects are expected for
other forms of energy transfer among the modes, since the
principles of APLIP imply an eigenstate specific transfer to the
target adiabatic Born-Oppenheimer potential, regardless of the
nature of the couplings.

In our models we have not included the effects of rotation
and conical intersections. Since the transfer occurs in a single
adiabatic potential, we believe that the strong pulses will induce
adiabatic alignment.28-30 The direction of the alignment will
change in time adapting to the specific electronic mixture that
configures the light-induced potential. Then, the adiabatic

Figure 10. Adiabatic thresholds as a function of the rotating angleθ
for translated excited potentials [d ) (0.3, 0.3)] using the SPM (left)
and APM (right) models and shorter pulses. The initial state is (0, 1).

Figure 11. Final population in APLIP with translated and rotated
excited potential, in the APM using shorter (left frames) and longer
(right frames) pulses, for different rotation anglesθ. The initial state
is (0, 1).
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rotational wave packet should not interfere with the vibrational
adiabatic dynamics.31

On the other hand, conical intersections in the target potential
can obviously drive part of the wave packet to uncontrolled
parts of the Hamiltonian. The APLIP dynamics relies on
isolating the ground and target potentials from other electronic
states. In principle, with strong nonresonant pulses it is even
possible to dynamically shift the position of the conical
intersections, although it will be difficult to control at the same
time the APLIP process.

Finally, although APLIP prepares a single eigenstate of the
target adiabatic Born-Oppenheimer potential, it is not possible
to guarantee the selectivity for strange molecular topologies,
like double well structures, where the couplings are very weak.19

In fact, the main experimental problems associated with APLIP
are the ones observed already for simple diatomic molecules:
the need to isolate the LIP from multiphoton or unwanted
transitions yet using very strong laser pulses. Therefore, the
search for physical systems, either diatomic or polyatomic,
where these conditions can be met as best as possible, is under
way.
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